183 research outputs found

    Vector Addition System Reversible Reachability Problem

    Full text link
    The reachability problem for vector addition systems is a central problem of net theory. This problem is known to be decidable but the complexity is still unknown. Whereas the problem is EXPSPACE-hard, no elementary upper bounds complexity are known. In this paper we consider the reversible reachability problem. This problem consists to decide if two configurations are reachable one from each other, or equivalently if they are in the same strongly connected component of the reachability graph. We show that this problem is EXPSPACE-complete. As an application of the introduced materials we characterize the reversibility domains of a vector addition system

    Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension

    Full text link
    The reachability problem in vector addition systems is a central question, not only for the static verification of these systems, but also for many inter-reducible decision problems occurring in various fields. The currently best known upper bound on this problem is not primitive-recursive, even when considering systems of fixed dimension. We provide significant refinements to the classical decomposition algorithm of Mayr, Kosaraju, and Lambert and to its termination proof, which yield an ACKERMANN upper bound in the general case, and primitive-recursive upper bounds in fixed dimension. While this does not match the currently best known TOWER lower bound for reachability, it is optimal for related problems

    The Reachability Problem for Petri Nets is Not Elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.Comment: Final version of STOC'1

    Reachability Analysis of Communicating Pushdown Systems

    Full text link
    The reachability analysis of recursive programs that communicate asynchronously over reliable FIFO channels calls for restrictions to ensure decidability. Our first result characterizes communication topologies with a decidable reachability problem restricted to eager runs (i.e., runs where messages are either received immediately after being sent, or never received). The problem is EXPTIME-complete in the decidable case. The second result is a doubly exponential time algorithm for bounded context analysis in this setting, together with a matching lower bound. Both results extend and improve previous work from La Torre et al

    Decomposition of Decidable First-Order Logics over Integers and Reals

    Full text link
    We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation

    Structural Presburger digit vector automata

    Get PDF
    International audienceThe least significant digit first decomposition of integer vectors into words of digit vectors provides a natural way for representing sets of integer vectors by automata. In this paper, the minimal automata representing Presburger sets are proved structurally Presburger: automata obtained by moving the initial state and replacing the accepting condition represent Presburger sets

    Structural Presburger-definable Digit Vector Automata

    Get PDF
    Les automates finis permettent de représenter symboliquement des ensembles infinis de vecteurs d'entiers décomposés comme des mots de vecteurs de chiffres. On montre que l'automate minimal représentant un ensemble Presburger-définissable est structurellement Presburger-définissable: c'est à dire, que les automates obtenus en changeant l'état initial et les états finaux représentent des ensembles Presburger-définissables./ Digit Vector Automata (DVA) provide a natural symbolic representation for regular sets of integer vectors encoded as strings of digit vectors (least significant digit first). We prove that the minimal DVA that represents a Presburger-definable set is structurally Presburger-definable: that means, the DVA obtained by modifying the initial state and the set of final states represents a Presburger-definable set
    • …
    corecore